東吳大學 105 學年度轉學生(含進修學士班轉學生)招生考試試題

第1頁,共2頁

系	經濟學系三年級	考試	100 分鐘
級	120/14/402	時間	- 3 3 7 4 - 2
科	仙红土八	本科	100 分
目	微積分	總分	100 分

- **1.** (10 points) Find the extreme value(s) of $z = 2x_1^2 + x_1x_2 + 4x_2^2 + x_1x_3 + x_3^2 + 2$.
- **2.** (20 points) Use the Lagrange-multiplier method to find the stationary values of z and determine whether it is a maximum or a minimum:
- (a) z = xy, subject to x + 2y = 2.
- (b) z = x(y+4), subject to x + y = 8.
- **3.** (10 points) Determine whether $q = 4u^2 + 4uv + 3v^2$ subject to u 2v = 0 is either positive or negative definite.
- **4.** (20 points) Find the Maclaurin series (with n = 4 and $x_0 = 0$) and Taylor series (with n = 4 and $x_0 = -2$) for:

(a)
$$\phi(x) = \frac{1}{1-x}$$
.

(b)
$$\phi(x) = \frac{1-x}{1+x}$$
.

5. (10 points) The following three equations

$$xy - w = 0$$
 $F^1 = (x, y, w; z) = 0$

$$y-w^3-3z=0$$
 $F^2=(x, y, w; z)=0$

$$w^3 + z^3 - 2zw = 0$$
 $F^3 = (x, y, w; z) = 0$

are satisfied at point P:(x, y, w; z) = (1/4, 4, 1, 1).

- (a) Check whether the conditions of the implicit-function theorem are satisfied.
- (b) Use the implicit-function theorem to find the comparative-static derivative ($\partial x/\partial z$).

背面尚有試題

東吳大學 105 學年度轉學生(含進修學士班轉學生)招生考試試題

第2頁,共2頁

系級	經濟學系三年級	考試 時間	100 分鐘
科目	微積分	本科總分	100 分

6. (10 points) Use Cramer's rule to solve the following equation systems:

$$4x + 3y - 2z = 1$$

(a)
$$x + 2y = 6$$

$$3x + z = 4$$

$$-x + y + z = a$$

(b)
$$x - y + z = b$$

$$x + y - z = c$$

7. (10 points) Are the following functions strictly monotonic?

(a)
$$y = -x^6 + 5$$
 $(x > 0)$

(b)
$$y = 4x^5 + x^3 + 3x$$

Find dx/dy by the inverse-function rule.

8. (10 points) Given
$$A = \begin{bmatrix} -1 & 5 & 7 \\ 0 & -2 & 4 \end{bmatrix}$$
, $b = \begin{bmatrix} 9 \\ 6 \\ 0 \end{bmatrix}$, and $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Calculate (a) Ab, (b) AIb, (c) x'IA, and (d) x'A.